MiRNA-200b Regulates RMP7-Induced Increases in Blood-Tumor Barrier Permeability by Targeting RhoA and ROCKII

نویسندگان

  • Teng Ma
  • Yi-xue Xue
چکیده

The primary goals of this study were to investigate the potential roles of miR-200b in regulating RMP7-induced increases in blood-tumor barrier (BTB) permeability and some of the possible molecular mechanisms associated with this effect. Microarray analysis revealed 34 significantly deregulated miRNAs including miR-200b in the BTB as induced by RMP7 and 8 significantly up-regulated miRNAs in the BTB by RMP7. RMP7 induced tight junction (TJ) opening of the BTB, thereby increasing BTB permeability. Associated with this effect of RMP7 was a decrease in miR-200b expression within the human cerebral microvascular endothelial cells line hCMEC/D3 (ECs) of the BTB. Overexpression of miR-200b inhibited endothelial leakage and restored normal transendothelial electric resistance values. A simultaneous shift in occludin and claudin-5 distributions from insoluble to soluble fractions were observed to be significantly reduced. In addition, overexpression of miR-200b inhibited the relocation of occludin and claudin-5 from cellular borders into the cytoplasm as well as the production of stress fiber formation in GECs (ECs with U87 glioma cells co-culturing) of the BTB. MiR-200b silencing produced opposite results as that obtained from that of the miR-200b overexpression group. Overexpression of miR-200b was also associated with a down-regulation in RhoA and ROCKII expression, concomitant with a decrease in BTB permeability. Again, results which were opposite to that obtained with the miR-200b silencing group. We further found that miR-200b regulated BTB permeability by directly targeting RhoA and ROCKII. Collectively, these results suggest that miR-200b's contribution to the RMP7-induced increase in BTB permeability was associated with stress fiber formation and TJ disassembly as achieved by directly targeting RhoA and ROCKII.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the miRNA-200b by transcriptional regulators PEA3 and ELK-1 affects expression of Pin1 to control anoikis

MiRNA-200s regulate E-cadherin by directly targeting ZEB1/ZEB2, which are transcriptional repressors of E-cadherin. Decreased expression of E-cadherin results in cancer cells losing interaction with the extracellular matrix (ECM) and detaching from the primary tumor. Normally, cells will undergo anoikis after losing interaction with the ECM. Cancer cells must therefore possess the ability to re...

متن کامل

Regulation of RhoA-dependent ROCKII activation by Shp2

Contractile forces mediated by RhoA and Rho kinase (ROCK) are required for a variety of cellular processes, including cell adhesion. In this study, we show that RhoA-dependent ROCKII activation is negatively regulated by phosphorylation at a conserved tyrosine residue (Y722) in the coiled-coil domain of ROCKII. Tyrosine phosphorylation of ROCKII is increased with cell adhesion, and loss of Y722...

متن کامل

MicroRNA-200b Regulates Vascular Endothelial Growth Factor–Mediated Alterations in Diabetic Retinopathy

OBJECTIVE Diabetic retinopathy (DR) is a leading cause of blindness. Increased vascular endothelial growth factor (VEGF), promoting angiogenesis and increased permeability, is a key mechanistic abnormality in DR. We investigated microRNA (miRNA) alterations in DR with specific focus on miR-200b, and its downstream target, VEGF. RESEARCH DESIGN AND METHODS miRNA expression profiling microarray...

متن کامل

RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs.

Rho family GTPases have been implicated in the regulation of endothelial permeability via their actions on actin cytoskeletal organization and integrity of interendothelial junctions. In cell culture studies, activation of RhoA disrupts interendothelial junctions and increases endothelial permeability, whereas activation of Rac1 and Cdc42 enhances endothelial barrier function by promoting the f...

متن کامل

Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics.

Many biochemical factors regulating progenitor cell differentiation have been examined in detail; however, the role of the local mechanical environment on stem cell fate has only recently been investigated. In this study, we examined whether oscillatory fluid flow, an exogenous mechanical signal within bone, regulates osteogenic, adipogenic or chondrogenic differentiation of C3H10T1/2 murine me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016